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Abstract

Detection methods based on n-gram models have been widely
studied for the identification of attacks and malicious soft-
ware. These methods usually build on one of two learning
schemes: anomaly detection, where a model of normality is
constructed from n-grams, or classification, where a discrim-
ination between benign and malicious n-grams is learned.
Although successful in many security domains, previous work
falls short of explaining why a particular scheme is used and
more importantly what renders one favorable over the other
for a given type of data. In this paper we provide a close look
on n-gram models for intrusion detection. We specifically
study anomaly detection and classification using n-grams
and develop criteria for data being used in one or the other
scheme. Furthermore, we apply these criteria in the scope
of web intrusion detection and empirically validate their ef-
fectiveness with different learning-based detection methods
for client-side and service-side attacks.

Categories and Subject Descriptors

C.2.0 [Computer-Communication Networks]: General—
Security and Protection; K.6.5 [Computing Milieux]: Man-
agement of Computing and Information Systems—Security
and Protection - Invasive software; I.5.1 [Pattern Recog-
nition]: Models—Statistical
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1. INTRODUCTION
Computer security faces a constant and daily growth of

new threats in the Internet. The attack vectors, types and
ramifications of these threats are manifold. On the client
side, malware infections pose a risk to the security of indi-
vidual hosts and connected networks. Numerous types of
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malware are used for infecting computers at a large scale
and conducting illegal activities, such as the distribution of
spam messages or the theft of personal data [see 2, 12]. On
the server side, a plethora of attacks target network ser-
vices, which range from classic exploits against vulnerable
implementations to sophisticated injection attacks, such as
XSS and CSRF. These attacks are regularly used for com-
promising web servers and retrieving sensitive data, such as
passwords and credit card numbers.

A few years ago it might have been possible to craft de-
tection rules for these threats manually. Nowadays however,
manual analysis fails to keep pace with attack development
and more automation is needed to handle the overwhelm-
ing amount of novel threats. As a result, alternative lines
of research have been explored for the detection of attacks,
most notably methods based on machine learning. Several
of these learning-based approaches build on the concept of
n-grams, that is, attacks are identified by analyzing sub-
strings of length n extracted from the observed data stream.
Such n-gram models have been successfully applied for spot-
ting malicious activity in system call traces [11, 51], packet
payloads [49, 50], executable files [19, 35] and JavaScript
code [24, 37].

In terms of machine learning these detection methods can
be roughly categorized into one of two learning schemes:
anomaly detection and classification. In the first case, a
model of normality is constructed from n-grams and used to
identify attacks as deviations thereof [e.g., 11, 49], whereas
in the second case a discrimination between benign and ma-
licious n-grams is learned [e.g., 35, 37]. Although both
schemes have been successfully applied in a large body of
previous work, little is known about when to favor one over
the other in a detection task and how the distribution and
characteristics of the extracted n-grams influence this choice.

In this paper we take a close look on n-gram models for in-
trusion detection. We study both learning schemes in detail
and shed light on what makes a problem and its data suit-
able for one or the other setting. As part of this analysis we
develop three suitability criteria, namely the perturbation,
density and variability of n-grams, that enable us to assess
whether data fits the scheme of anomaly detection or clas-
sification should be used. We study these criteria on seven
common types of data used in intrusion detection, including
text and binary protocols as well as system call traces and
JavaScript code. In a case study on web intrusion detection,
we finally validate our criteria in both learning schemes.



In summary, the contributions of the analysis presented
in this paper are as follows:

• We discuss the scope of anomaly detection and classi-
fication for intrusion detection and define prerequisites
for practical application.

• We devise suitability criteria for n-gram models for
intrusion detection that help selecting an appropriate
learning scheme.

• Finally, we demonstrate the validity of the developed
criteria in a case study on client-side and server-side
web intrusion detection.

The rest of the paper is structured as follows: The two
prevalent learning schemes for intrusion detection are pre-
sented in Section 2, while n-gram models are discussed in
Section 3. In Section 4 we analyze datasets from different
domains and develop our suitability criteria. These criteria
are evaluated in a series of experiments, whose results are
presented in Section 5. Section 6 discusses related work and
Section 7 concludes.

2. LEARNING SCHEMES
In many fields of application where learning methods are

applicable for decision making one often is confronted with
the selection of the underlying learning scheme. For intru-
sion detection two schemes are prevalent: classification and
anomaly detection. In this section we shortly review both
of these schemes in order to identify possible indicators for
deciding when to use the one or the other.

malicious

benign

(a) Classification

normal
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lous
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Figure 1: Schematic depiction of learning schemes.

Classification.
In computer security often very strict definitions are in

demand for deciding about something being benign or mali-
cious, which immediately suggests a classification task. The
identification of the two classes is achieved by learning a
discrimination as illustrated in Figure 1(a). Several learn-
ing methods, such as decision trees, neuronal networks and
boosting can be used for learning a classification [8]. An
intuitive example is the two-class SVM that learns a hy-
perplane separating two classes with maximum margin in
a feature space [see 43]. Learning a classification, however,
requires enough data of both classes in order to be able to
generalize to unseen samples. If one class is represented by
a few instances only, it is likely that the learning will overfit
and thereby impede detection of unknown attacks. In this
regard a lack of data for one class is already a crucial factor
for abstaining from using classification.

In some cases of intrusion detection, sufficient data for
both classes can be acquired automatically. For example,
for learning a client-side detection of web-based attacks, it
is possible to actively visit benign and malicious web pages

using honeyclients and special crawlers [e.g., 18, 42]. This
crawling enables one to assemble a recent collection of train-
ing data for both classes. In other settings, as for example
the server-side detection of web-based attacks, one is re-
stricted to passively wait for attacks using network honey-
pots. As a consequence, it is not possible to put together a
representative set of server-side attacks in a timely manner
and classification methods should not be employed.

Anomaly Detection.
Detecting unknown attacks is of critical importance in se-

curity, as these may relate to zero-day exploits or new in-
stances of known malware. Fortunately, it is possible to take
this scenario into account using anomaly detection—even if
no attacks are available for learning. By focusing on the
prominent class and learning its structure, it is possible to
differentiate that class from everything else, as illustrated in
Figure 1(b). Several methods are suitable for learning such
a model of normality, for example, by analyzing the density,
probability or boundary of the given class [8]. A common
method for anomaly detection is the spherical one-class SVM
(or SVDD) that determines a hypersphere enclosing the data
with minimum volume [see 43].

At this point it is important to stress that anomaly detec-
tion methods do not explicitly learn to discriminate benign
from malicious data, but instead normality from anomalies.
This semantic gap requires one to design features and de-
tection systems carefully, as otherwise identified anomalies
may not reflect malicious activity [13, 45]. Moreover, it is
also necessary to sanitize the training data to avoid incor-
porating attacks in the model of normality [5]. Nonetheless,
anomaly detection is the learning scheme of choice if little
or no data is available for the attack class, as for example,
when learning a server-side detection of attacks.

Prerequisites.
In summary, both learning schemes offer their advantages

if used in the right setting. We thus arrive at the following
prerequisites for learning-based detection:

• Classification. If enough representative data is avail-
able for both classes, this scheme allows to learn a
model for discriminating one class from the other. De-
pending on the type of attacks, this discrimination may
generalize to unknown attacks but is not guaranteed
to do so.

• Anomaly Detection. If only one class is available for
learning, anomaly detection allows to learn a model for
detecting unknown attacks. However, a careful design
of the detection system is necessary in order to limit
the semantic gap between attacks and anomalies.

3. N-GRAM MODELS
Most learning methods operate on numeric vectors rather

than on raw data. Therefore, it often is necessary to con-
struct a map to a vector space for interfacing with learning
methods. In some settings, this can be achieved by defining
numeric measures describing the data, such as the length or
the entropy of packets. A more generic map, however, can
be developed using the concept of n-gram models. Initially
proposed for natural language processing [3, 6, 46], n-grams
have become the representation of choice in many detection
systems [e.g., 21, 24, 32, 37, 38, 49].



To describe data in terms of n-grams, each data object x
first needs to be represented as a string of symbols from an
alphabet A, where A is often defined as bytes or tokens. For
example, for analyzing network packets, we simply consider
the data in each packet as a string of bytes. Similarly, we
can model JavaScript code in web pages by representing the
code as a string of lexical tokens.

By moving a window of n symbols over each object x,
we can then extract all substrings of length n. These sub-
strings (n-grams) give rise to a map to a high-dimensional
vector space, where each dimension is associated with the
occurrences of one n-gram. Formally, this map φ can be
constructed using the set S of all possible n-grams as,

φ : x →
(

φs(x)
)

s∈S
with φs(x) = occ(s, x)

where the function occ(s, x) simply returns the frequency,
the probability or a binary flag for the occurrences of the
n-gram s in the data object x.

Several methods for the detection of attacks and malicious
software indirectly make use of this map. For example, the
methods PAYL [50], McPAD [32] and Anagram [49] analyze
byte n-grams for detecting server-side attacks, where the
first two consider frequencies and the latter binary flags for
the occurrences of n-grams. Similarly, the methods Cujo [37]
and PJScan [24] use token n-grams with a binary map for
identifying malicious JavaScript code in web pages and PDF
documents, respectively.

Although n-grams provide generic and effective means for
modeling data, the exponential growth of the resulting vec-
tor space apparently impedes efficient operation. However,
the number of n-grams in a particular object x is linear in
the object’s size and thus efficient data structures can be
used for processing the extracted n-grams. For example,
the method Anagram [49] builds on Bloom Filters [1] for
storing n-grams, while the detector Cujo [37] uses sparse
feature vectors to efficiently represent the n-grams. Later
on we show that this sparsity is not only beneficial for deal-
ing with high-dimensional vectors but also provides a good
indicator for the feasibility of anomaly detection.

4. DATA ANALYSIS
Based on the presented n-gram models, we now study the

characteristics of different types of data and their respective
n-grams. A summary of the considered datasets is given in
Table 1. Before we proceed to defining suitability criteria,
we provide further details on the datasets and describe the
different sources we gathered the data from.

4.1 Datasets
In order to cover a large variety of data from different fields

of applications we consider two scenarios: First, data for
client-side intrusion detection and second, data for server-
side intrusion detection. The first datasets cover system call
traces of programs and JavaScript code of web pages, while
the latter involve binary and text-based network protocols.

Client-side Datasets.
The JavaScript dataset is gathered by randomly drawing

230,000 URLs from the list of the top most visited web pages
provided by Alexa1. For analysis, the URLs are actively
crawled using the client-side honeypot ADSandbox [7] in

1Alexa Top Sites, http://www.alexa.com/topsites

order to (a) extract all JavaScript code and (b) analyze the
code dynamically. The output of this analysis—events mon-
itored during the execution of the code—constitutes the first
JavaScript dataset (JS-Dyn). For the second dataset (JS-
Stat) we additionally process the plain JavaScript code sim-
ilarly to Rieck at al. [37] by extracting lexical tokens, such
as identifiers and numerical constants. We scan all URLs
using the GoogleSafeBrowsing service to limit the number
of attacks in the data.

The dataset of system call traces (Syscalls) is extracted
from the original DARPA IDS evaluation datasets [27] and
corresponds to audit trails of the Solaris BSM module. Al-
though outdated and criticized [28, 30] we still consider this
dataset useful for studying the characteristics of n-gram
models on client-side data.

Server-side Datasets.
The application layer of the Internet protocol suite con-

tains a variety of different protocols based on which we can
build our study. In particular we consider DNS and SMB
as representatives for binary protocols and HTTP and FTP
for text-based protocols.

The DNS dataset has been recorded in a period of one
week at our research institute resulting in a total of 294,431
requests. In case of SMB an overall amount of 22.6 GB of
data in 154,460 messages has been collected on a single day
at our institute. SMB often encapsulates files and conse-
quently involves far more data than other protocols. The
HTTP data has been recorded from a content management
system running at our institute in a period of one week and
incorporates 237,080 HTTP requests. For the FTP com-
munication we make use of data recorded at the Lawrence
Berkeley National Laboratory (LBNL) during a period of 10
days with more than 22,000 FTP sessions [31].

On top of the distinction between client-side and server-
side detection we differentiate the datasets according to the
used type of n-grams. For our analyses and experiments we
use the types as shown in Table 1, which are consistent with
previous work [see 16, 37, 38, 49]. Specifically, we use byte
n-grams for the network protocols and token n-grams for the
JavaScript and system call datasets, where the tokens cor-
respond to events, lexical tokens and system call identifiers,
respectively.

4.2 Analysis and Discussion
When it comes to the application of learning-based meth-

ods there are several prerequisites to be clarified beforehand.
For instance, how much training data is needed in order to
learn an expressive model? Obviously the more data is used
for training, the better the outcome might be. To detail this
rather general statement Wang et al. for instance specify
the “likelihood of seeing new n-grams as training time in-
creases” [49] in order to indicate the completeness of their
model in terms of the amount of training data. If this mea-
sure converges, the training set can be considered as suffi-
ciently large.

If one looks at an even earlier stage of learning other very
important considerations need to be made. For instance, is
the underlying problem, the data to be used and the con-
structed feature space suitable for learning? Unfortunately
previous work often falls short of explaining the reasons for
or against particular methods and features.



Dataset HTTP FTP JS-Stat & JS-Dyn Syscalls DNS SMB

Size 237,080 reqs 22,615 sessions 230,000 URLs 25,797 traces 294,431 reqs 154,460 msg blocks
n-gram type byte byte token token byte byte

Table 1: Description of the datasets used for our analyses and experiments. Additionally to the size of the
datasets also the used n-gram types are specified.

4.2.1 Suitability Criteria
We have worked out three criteria for a problem’s suitabil-

ity for being learned in an anomaly detection setting: The
perturbation within a dataset’s main class, the density of
the used feature space and the variability of the n-grams in
the individual classes. In this section we study these criteria
exemplarily on the following datasets: FTP, HTTP, both
views on the JavaScript code (JS-Dyn & JS-Stat) and the
system call traces (Syscalls).

Criteria 1 (Perturbation). The perturbation is the
expected ratio of n-grams in a benign object that are not part
of the training data.

A perturbation value of 0 means that all possible n-grams
in the dataset have been observed in the training phase,
whereas a high value indicates that despite training a large
number of unseen n-grams is still to be expected in benign
objects during testing.

This measure is closely related to the likelihood of un-
seen n-grams as discussed by Wang et al. [49]. However,
convergence of the likelihood only tells one that the train-
ing does not improve anymore with an increasing amount
of data. It does not allow to draw conclusions about the
data’s suitability for anomaly detection as such. To do so
we consider the likelihood of the last objects observed dur-
ing the training phase as the expected perturbation during
testing. Figure 2(a) illustrates the perturbation for our five
datasets on the example of 3-gram models. Note that one of
those clearly stands out, namely the datasets composed out
of the dynamic JavaScript reports. The other four quickly
converge to zero and do not exhibit any significant level of
perturbation after training. Also JS-Dyn seems to converge
but to a value unequal to zero. Hence, in this particular case
benign data constantly exhibits 5–10% of unseen n-grams.
This renders anomaly detection very difficult, as each benign
object appears to be anomalous to 5–10% already.

So, where do the perturbations in the JS-Dyn dataset
come from? The dataset covers the behavior of JavaScript
code and thus contains variable names and strings. As a re-
sult, the alphabet of the n-grams is not fixed, that is, there
exists an infinite number of tokens, consisting of variable
names and strings. This is of course not a flaw of the sand-
box, but rather a feature as the behavior is monitored with
great detail. The resulting reports simply are not suitable
for being learned on with token n-grams in an anomaly de-
tection setting. For classification in turn Rieck et al. [37]
show that the dataset can be used with great success.

However, in order to be able to still use anomaly detection
one needs to preprocess the data such that the parts causing
the perturbation are abstracted. For JS-Stat this was done
by lexically analyzing the raw program code and introduc-
ing dedicated string tokens that hide but describe the raw
data [24, 37]. That way also the names of functions, param-
eters and variables are abstracted. Similarly it is possible to
abstract reports from JS-Dyn.

Criteria 2 (Density). The density is the ratio of the
number of unique n-grams in a dataset to the total number
of all possible n-grams induced by the underlying alphabet.

As second criteria we use the density of a training dataset
when mapped into the feature space induced by n-grams. A
value close to 0 indicates low density, i.e. the feature space
is sparse, whereas a value of 1 means that the feature space
is maximally dense. This is directly related to the overall
size of the feature space and can provide some indication
of how well a class can be learned for anomaly detection.
For instance, if the datasets have been oversimplified in the
course of lowering the perturbation, it might happen that
the remaining symbols are too general to reflect the charac-
teristics that differentiate one class from the other. There-
fore, in feature space both classes occupy an identical and
above all, dense region. This of course assumes a certain
homogeneity of the benign and malicious data.
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Figure 2: The suitability criteria on example of the FTP, HTTP, JS-Dyn, JS-Stat and the Syscalls datasets.
(a) The perturbation within a dataset (averaged on a sliding window of 5000 samples), (b) the density of the
introduced feature space and (c) the variability of the n-grams in these datasets.



Figure 2(b) shows the density of the HTTP, FTP, JS-
Stat and Syscalls datasets. Obviously, it is not possible to
measure the density for an infinite large set of n-grams as
induced by the dynamic JavaScript reports. Therefore, the
JS-Dyn dataset is not present in the figure. Using the den-
sity it is possible to estimate how well it can be learned on
a particular dataset. In Section 5 we experimentally show
this relation based on the HTTP and JS-Stat datasets. At
first sight the plotted values seem vanishingly low due to
logarithmic scale and the overall size of the feature space as
denominator. However, the steepness of the density’s decay
over increasing n-gram lengths is the crucial indicator here.

Criteria 3 (Variability). The variability is the ratio
of the data’s entropy to its maximal value as induced by the
alphabet size (normalized entropy).

The third suitability criteria is the variability of a dataset
to be used for training. A value of close to 0 means that
the variability of the data is very low, whereas a value of
1 indicates maximal uncertainty about the next element in
a sequence. The corresponding values for our datasets are
illustrated in Figure 2(c). As the variability is normalized
to its maximal value, consequently it again cannot be de-
termined for data that has a virtually infinite set of unique
n-gram tokens such as the dynamic JavaScript reports (JS-
Dyn). Therefore, this dataset is yet again spared out in the
figure for this criteria.

Using the variability it is possible to characterize the struc-
ture of the datasets. It is equally important for anomaly
detection as well as classification that the data possesses
noticeable structure which can be learned and used for de-
tection. Random data which by nature does not present
any kind of visible structure, but largest possible variability
would appear as a flat line at the maximum of 1.0. For the
other datasets (from JS-Stat over HTTP and FTP down to
Syscalls) a constant decay of the variability levels can be ob-
served. This directly mirrors the difficulty to learn a model
based on these datasets.

4.2.2 Case Study: Binary-based Protocols
In this section we examine binary-based protocols with

respect to the criteria set up in the previous section in more
detail. Such protocols are not to be categorically ruled out
only because they happen not to be human readable and
therefore, less intuitively comprehensible. Depending on the

specific dataset it might be necessary to parse and generalize
the protocol beforehand, though. However, for this study
and in line with previous work we apply byte n-grams on
the raw payloads, similarly to HTTP and FTP.

In particular we examine the SMB/CIFS protocol suite
and the DNS protocol. SMB is mainly used for the transfer
of data, but includes other functionality such as the Win-
dows RPC (MSRPC ). Our SMB dataset features the special
property that data was mainly retrieved from the server and
only in a few exceptions uploaded by the client. This allows
us to study two different scenarios in the use of SMB: First,
the use of largely pure SMB requests send by the client to
the server and only little additional raw data (SMB-Client)
and second, SMB commands that are heavily interleaved
with the transmitted data (SMB-Server). DNS on the other
hand consists out of relatively short requests and in a large
part of printable characters—the requested domain name.

In both cases the basis for a low perturbation is provided
due to the bounded alphabet of 256 bytes. Figure 3(a)
illustrates the perturbation levels for DNS and the SMB
datasets. Especially DNS quickly reaches zero perturba-
tion, whereas SMB-Server requires much more data and
also SMB-Client would have needed more training. Note
that SMB-Server not only stands out clearly, but its peak
is displaced with respect to the beginning of the recording.
This indicates that in the beginning similarly to SMB-Client
mainly pure message blocks are exchanged, before at some
point the transmission of large amounts of raw data starts.

Such raw data often is compressed and therefore exhibits
a high entropy. Therefore, the uncertainty about the over-
all observed n-grams increases and obscures the structure
of the protocol. Figure 3(c) shows the variability and re-
veals the lack of perceptible structure of the SMB-Server
dataset. SMB-Client on the other hand does not fully share
this problem. This suggests that learning n-gram models
of SMB traffic would be feasible if the interleaved raw data,
which constitutes additional noise for the learning algorithm,
is excluded. This is equally true for classification as well as
anomaly detection, whereby it is especially critical for the
latter. One option to restrict the data to a manageable
subset is, for instance, to only look at Windows RPC mes-
sages [15].

The density exposes another interesting property of the
considered binary protocols. Figure 3(b) shows that for n-
grams of lengths up to n = 3 the density is especially high.
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Figure 3: The suitability criteria applied to the binary-based protocols in our datasets: (a) Perturbation, (b)
Density and (c) Variability. For the latter two we additionally included the HTTP communication dataset
as a baseline.



This happens due to the use of numeric variables as part of
the protocol that may span over the entire range of byte val-
ues, such as length specifiers for subsequent fields, headers,
etc. With larger values of n this influence decreases. SMB-
Client and the DNS requests even align with the values for
the HTTP dataset.

In summary, the developed criteria largely confirm pre-
viously expressed concerns regarding the suitability of bi-
nary protocols and especially SMB [e.g., 15] for learning.
However, simultaneously it is shown that learning cannot
be ruled out categorically. Constraining the use of raw data
in SMB can lower the complexity to a feasible level. Also
DNS requests appear to be very well manageable. Neverthe-
less, one needs to note that in the case of DNS the type of
attacks usually differ from those seen for HTTP and FTP.
For DNS it is often about the sequence and chronology of
requests in order to implement denial-of-service or spoofing
attacks. Therefore, although the DNS requests’ data as such
is suitable for classification as well as anomaly detection,
learning such attacks can only succeed if timing information
and relations of the requests are included in the data.

4.2.3 Pitfalls
Finally we want to point out a particular pitfall that gen-

erally comes with the use of hash functions and is related
to the density criteria described earlier. For intrusion de-
tection based on n-grams this is of special interest whenever
methods make use of hashing to represent n-grams [e.g 49].

When using hash functions it is necessary to take the in-
fluence of collisions into account. Two or more objects (e.g.
n-grams) may by chance result in the same hash value. De-
pending on the size of the feature space this is more or less
likely, but of course also the overall number of hashed and
store objects influences the number of collisions. This can
be thought as the saturation of the hash function’s output
range. In the worst case an n-gram model may describe all
possible n-grams (when fully saturated) rather than those
representing normal or malicious behavior, thereby artifi-
cially increasing the density of the feature space (cf. Sec-
tion 4.2.1).
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Figure 4: The influence of the saturation of a hash
function’s output range on the example of 5 -grams
extracted from the dynamic JavaScript reports (JS-
Dyn).

Figure 4 shows the influence of the saturation of a hash
function’s output range on the convergence of the dataset’s
perturbation. One curve shows a seemingly ideal conver-
gence for JS-Dyn (5 -grams), whereas the other suggests a
far from optimal behavior. On closer examination it be-
comes clear that this happens due to different hash satu-
ration levels of 80.44% and 9.69% respectively. Hence, we
have made sure not to exceed a hash saturation of 10% for
our analyses in order to minimize collisions and obtain the
most accurate results.

5. EXPERIMENTS
We proceed with an empirical evaluation of the proposed

suitability criteria. In particular, we study the performance
of n-gram models for web intrusion detection. To this end,
we focus on three of the datasets from Section 4.1, namely
the HTTP dataset, comprising requests to a web server, and
the JS-Stat and JS-Dyn datasets, covering analysis reports
of JavaScript code retrieved by a web client.

5.1 Malicious Datasets
For the HTTP dataset, we select several recent exploits

contained in the Metasploit framework [29] as attacks. These
exploits are used with different payload encoders, resulting
in a total of 89 HTTP attack samples. We run and record
these attacks under controlled conditions against the same
content management system from which we have collected
the benign HTTP data. For JavaScript datasets, we use
609 attacks collected using the Wepawet service [4]. These
attacks cover drive-by downloads of different types and cam-
paigns, such as malicious web pages involved in SQL injec-
tion attacks and spam campaigns. The attacks are described
in more detail in [37].

5.2 Detection Methods
We consider two anomaly detection and classification meth-

ods for our experiments: First, we employ a one-class and
a two-class version of the detection method Anagram, and
second, we make use of a one-class and two-class SVM s.
Both methods have been successfully applied for network
intrusion detection [e.g., 32, 37, 49].

Anagram Detector.
Originally designed for analyzing packet payloads only,

Anagram [49] has turned into a generic anomaly detection
method that found its way into different approaches and do-
mains [e.g., 17, 20]. Anagram extends the method PAYL [50]
and uses a Bloom filter for analyzing high-order n-grams of
bytes. During the training phase the methods stores each
observed n-gram in the Bloom filter, while for testing it com-
putes the fraction of previously unseen n-grams in an object
using lookups in that filter. Anagram can be extended to
also support classification by using a second Bloom filter
trained on malicious content. For our experiments we thus
train one filter for benign data and another one for known
attacks. For anomaly detection we only consider the benign
filter of Anagram, whereas for classification we combine the
scores of both filters to obtain a joint decision.

Support Vector Machines (SVMs).
As second learning method we consider SVMs which can

be used for anomaly detection as well as classification [41].



Dataset
1C-Anagram 2C-Anagram 1C-SVM 2C-SVM

1% 0.1% 0.01 % 1% 0.1% 0.01 % 1% 0.1% 0.01 % 1% 0.1% 0.01 % FP

HTTP 100% 93.0% 93.0% 95.7% 93.9% 83.8% 100% 100% 98.2% 100% 100% 100%
JS-Dyn 37.9% 5.7% 0.0% 95.4% 81.6% 81.5% 41.6% 0.1% 0.0% 98.1% 71.2% 71.2%
JS-Stat 94.8% 87.1% 63.1% 96.2% 83.2% 82.9% 50.9% 23.1% 14.8% 99.3% 97.4% 94.6%

Table 2: The detection performance (as true positives rates) of the four different detection methods on our
datasets. In particular we choose a 4 -gram model for HTTP as well as JS-Stat and use 3 -grams for JS-Dyn.

In particular, we consider the regular two-class SVM that
learns a separating hyperplane with maximum margin and
the corresponding one-class SVM [40]. Note that this one-
class SVM is equivalent to the spherical one-class SVM dis-
cussed earlier if used with an appropriate kernel function.
The decision function of both schemes then is given by

f(x) =
∑

s∈S

φs(x) · ws + b

where φ is the map as define in Section 3 and w the weight
vector representing the hyperplane with bias b. To enable
an efficient learning with high-dimensional vectors, we apply
feature hashing [44], that is, the vector space is indexed
using the hash values of each n-gram. This acceleration
technique resembles the mechanism of Bloom filters used in
the Anagram detector.

5.3 Experimental Setup
For all experiments we randomly split the benign and ma-

licious datasets into two partitions in a ratio of three to one,
considering them as known and unknown data. The latter is
strictly used for performance evaluation, whereas the other
one is used for training. The splitting is repeated 10 times
and the results are averaged. For the malicious datasets we
additionally take care that the partitions contain distinct
attack types. In case of HTTP this can be done according
to the 28 exploits generated by Metasploit, while for the
JavaScript attacks we utilize the labels of a popular anti-
virus scanner, resulting in 30 distinct attack types.

As described in the previous section Anagram is defined
over the binary embedding of n-grams. For the SVM experi-
ments we similarly to Anagram make use of that embedding.
As a matter of fact our experiments show that in line with
previous work [e.g., 37, 49] this embedding often performs
better than a map based on n-gram frequencies. Addition-
ally, in order to avoid a bias on the object size we normalize
the feature vectors φ(x) to one, i.e., ∥φ(x)∥2 = 1.

5.4 Results and Discussion
The results of our experiments are listed in Table 2. For

each method and setting the true-positive rate is given for
different false-positive rates: 1%, 0.1% and 0.01%. The
anomaly detection scheme is prefixed with 1C and the clas-
sification scheme with 2C, respectively.

We can note at first, that for each dataset at least one com-
bination of n-grams and a learning scheme performs well,
such that over 81.5% of the attacks can be identified with
0.01% false alarms.

JavaScript (JS-Dyn).
Using our criteria from Section 4.2 we identify this dataset

of dynamic JavaScript reports as the least suitable for anomaly
detection. The conducted experiments substantiate this find-

ing and our criteria. The difference between classification
and anomaly detection is obvious (shaded in dark gray in
Table 2) for both tested detection methods. The 2-class
implementation of Anagram as well as the SVM clearly out-
perform their anomaly detection counterparts by 50–60 per-
cent points and more. This result confirms our analysis and
conclusions about this dataset and simultaneously backs up
findings from previous work [37], where the effectiveness of
classification in this setting was shown.

JavaScript (JS-Stat).
For this dataset of statically analyzed JavaScript code our

criteria show that it is very well possible to use anomaly de-
tection, but learning might prove difficult. This is indicated
by the higher density of the dataset and slower decay thereof
over increasing length of the n-grams. Also the variability is
higher than for datasets such as HTTP, for which anomaly
detection provably works very well [see 38, 49]. In our re-
sults this is especially notable for anomaly detection using
SVMs for which we experience a similarly significant drop
as for the dynamic reports. The Anagram implementation
is not influenced to the same extend. However, at a second
glance the detection performance for anomaly detection with
Angram (1C-Anagram) drops measurably faster in compari-
son to classification (2C-Anagram) when it comes to smaller
thresholds for the false-positive rate. If we further increase
the n-gram length this effect intensifies. For instance, for
7-grams in the anomaly detection setting the true-positive
rates drop to 47.8% and 15.9% for false-positive rates of
0.1% and 0.01%, respectively.

Web Requests (HTTP).
It does not come as surprise that both, anomaly detection

and classification work well for the HTTP dataset. As sum-
marized in Table 2 this holds true for the Anagram detector
as well as the detection using SVMs. The ability to success-
fully detect anomalies in web requests has been proven true
in several research works before [e.g., 33, 38, 49, 50] and is
in line with our criteria.

5.4.1 Summary
In our experiments we show that it is not only a black-

and-white decision about whether one or the other learning
strategy can be used for a particular dataset, but also about
the used parameters and methods. If a specific setting out
of learning method and parameters works satisfactory (c.f.
Anagram on JS-Stat using 4-grams) there is no point to
push forward in a region where it does worse (7-grams).
However, detailed analysis of the datasets can—next to the
fundamental suitability for a specific learning scheme—also
provide an insight about which parameter range might be
usable.



6. RELATED WORK
The use of n-grams is popular throughout various disci-

plines and fields. In the following we provide an overview
of n-gram models in computer security and highlight ap-
proaches using anomaly detection and classification. More-
over, we discuss work that addresses properties and limits
of n-grams in detection systems.

Anomaly Detection using n-Grams.
One of the first methods for the detection of attacks using

n-grams has been devised by Forrest et al. [11, 16]. The
method detects anomalous program behavior by counting
the number of unknown n-grams in system call traces. Fol-
lowing this seminal work, several related approaches have
been proposed for host-based anomaly detection, for exam-
ple, using probabilistic models [51], rule-based learning [25],
one-class SVMs [9], neural networks [14] and the inclusion
of system call arguments [22].

On the network side, first approaches for anomaly detec-
tion using n-grams have focused on byte frequencies, that
is, 1-grams over bytes [23, 50]. An example is the method
PAYL [50] that embeds packet payloads in a vector space
and detects anomalies by computing the distance to the av-
erage 1-gram distribution. Several methods extend this work
to support high-order n-grams [e.g., 17, 32, 38, 49]. For ex-
ample, the method Anagram [49] makes use of Bloom filters
for efficiently determining the fraction of unseen n-grams in
packet payloads, while the method by Rieck and Laskov [38]
builds on Trie data structures for computing distances in the
resulting vector space. Similarly, the system McPAD [32]
uses an approximation of high-order n-grams for efficiently
learning an ensemble of one-class SVMs.

A further example for anomaly detection using n-grams
is the method PJScan [24], which analyzes n-grams of lexi-
cal tokens from JavaScript code. In contrast to other work,
PJScan learns a one-class SVM on malicious instances of
JavaScript code and thereby realizes a reverse anomaly de-
tection, where everything deviating from the learned model
is identified as benign.

Classification using n-Grams.
A large body of security research has studied classification

using n-grams. For example, Kolter and Maloof [21] eval-
uate several classification methods, such as decision trees,
boosting methods and SVMs for detecting malicious exe-
cutable files. To reduce the dimensionality of the induced
vector space, the authors restrict the analysis to 500 n-grams
selected using the information gain. Similarly, Reddy and
Pujari [36] attempt to extract “relevant n-grams” for learn-
ing a classification between benign and malicious files. As
a further extension, the method McBoost [34] precedes the
classification of malware with an unpacking stage that al-
lows to extract n-grams from obfuscated code. In a similar
line of research, Jacob et al. [19] make use of n-grams over
bytes to classify malware without unpacking it.

Inspired by the frequent use of word n-grams in informa-
tion retrieval, several authors have also explored the use of
n-grams over larger alphabets for detecting malicious data.
The method Cujo [37], for instance, uses n-grams of lexical
tokens for classifying benign and malicious JavaScript code
with an SVM, while the method Malheur [39] conducts a
classification using n-grams of events observed during the
monitoring of malware in a sandbox.

Analysis of n-Gram Models.
With the increasing use of n-grams in detection systems,

a branch of security research has started to explore evasion
against this representation. As a result of this work, Wagner
and Soto [48] introduce mimicry attacks evading anomaly
detection based on system call sequences and thereby sub-
vert n-gram models. The blending attacks by Fogla et al. [10]
share the same idea but operate on the network level and
are capable of thwarting the method PAYL.

Apart from these adversarial settings, however, there is
little work on the characteristics of n-gram models and the
selection of a learning scheme. As one example, Lee and
Xiang [26] make use of information-theoretic measures to
quantify what types of probabilistic methods are applicable
for anomaly detection. In the course of that they identify
a relation between the conditional entropy and the length
of n-grams. The influence of the n-gram length is further
studied by Tan and Maxion [47]. In a thorough analysis
they identify blind spots in anomaly detection systems and
reason about the optimal length of n-grams.

More recently Hadžiosmanović et al. [15] compare the per-
formance of multiple anomaly detection systems, including
Anagram and McPad, on a number of binary protocols. Al-
though insightful in terms of the performance of the indi-
vidual systems, the authors unfortunately missed out on ex-
plaining the reasons for the observations made.

7. CONCLUSIONS
The detection of novel threats is a challenging and en-

during problem of computer security. While methods based
on n-grams cannot generally eliminate this problem, they
provide means for automatizing the generation of detection
models and thereby help to better fend off novel attacks.
However, several of the proposed solutions are rather ad hoc
and there is little reasoning about why a particular n-gram
model or learning scheme is used.

This paper aims at improving this situation and provides
insights on n-gram models for intrusion detection. To this
end, we have studied the use of anomaly detection and clas-
sification techniques with n-grams. As result of our analysis,
we define prerequisites that allow to decide whether one of
the two schemes is applicable (Section 2). Moreover, we de-
velop three suitability criteria that can be computed from
n-gram data prior to the design of a detection method (Sec-
tion 4). These criteria enable a practitioner to assess the
complexity of the detection task and help to select an ap-
propriate learning scheme.

Our suitability criteria, however, only provide indications
for favoring one scheme over the other and should not be
considered alone for designing a detection method. Depend-
ing on a particular detection task, it may be possible to
operate a learning scheme in a slightly imperfect setting for
the sake of other constraints, such as run-time performance.
Nonetheless, the criteria can guide the development of de-
tection methods and help to avoid tedious experiments with
different learning schemes.

To support further research in this field, the implemen-
tations and the prototype for conducting our analysis are
open-source software and will be made publicly available at
http://mlsec.org/salad.
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